\(\int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [162]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 95 \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d} \]

[Out]

2*a^(5/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d-4*a^(5/2)*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^(1/
2))*2^(1/2)/d+2*a^2*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3965, 86, 162, 65, 213} \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a^2 \sqrt {a \sec (c+d x)+a}}{d} \]

[In]

Int[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d - (4*Sqrt[2]*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/
(Sqrt[2]*Sqrt[a])])/d + (2*a^2*Sqrt[a + a*Sec[c + d*x]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 86

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[f*((e + f*x)^(p -
 1)/(b*d*(p - 1))), x] + Dist[1/(b*d), Int[(b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*((e + f*x)^(p -
 2)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3965

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(d*b^(m - 1)
)^(-1), Subst[Int[(-a + b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \text {Subst}\left (\int \frac {(a+a x)^{3/2}}{x (-a+a x)} \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}+\frac {a \text {Subst}\left (\int \frac {a^3+3 a^3 x}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}-\frac {a^3 \text {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}+\frac {\left (4 a^4\right ) \text {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d} \\ & = \frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}+\frac {\left (8 a^3\right ) \text {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d} \\ & = \frac {2 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}-\frac {4 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a^2 \sqrt {a+a \sec (c+d x)}}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.87 \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 (a (1+\sec (c+d x)))^{5/2} \left (\text {arctanh}\left (\sqrt {1+\sec (c+d x)}\right )-2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1+\sec (c+d x)}}{\sqrt {2}}\right )+\sqrt {1+\sec (c+d x)}\right )}{d (1+\sec (c+d x))^{5/2}} \]

[In]

Integrate[Cot[c + d*x]*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(2*(a*(1 + Sec[c + d*x]))^(5/2)*(ArcTanh[Sqrt[1 + Sec[c + d*x]]] - 2*Sqrt[2]*ArcTanh[Sqrt[1 + Sec[c + d*x]]/Sq
rt[2]] + Sqrt[1 + Sec[c + d*x]]))/(d*(1 + Sec[c + d*x])^(5/2))

Maple [A] (verified)

Time = 5.42 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.22

method result size
default \(-\frac {2 a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}}{2 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+\arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}-1\right )}{d}\) \(116\)

[In]

int(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*a^2*(a*(1+sec(d*x+c)))^(1/2)*(2*2^(1/2)*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)/(-cos(d*x+c
)/(cos(d*x+c)+1))^(1/2))+arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-1)

Fricas [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 300, normalized size of antiderivative = 3.16 \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\left [\frac {2 \, \sqrt {2} a^{\frac {5}{2}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) - 1}\right ) + a^{\frac {5}{2}} \log \left (-2 \, a \cos \left (d x + c\right ) - 2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - a\right ) + 2 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{d}, \frac {2 \, {\left (2 \, \sqrt {2} \sqrt {-a} a^{2} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - \sqrt {-a} a^{2} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) + a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}\right )}}{d}\right ] \]

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[(2*sqrt(2)*a^(5/2)*log(-(2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - 3*a*cos(d*x
 + c) - a)/(cos(d*x + c) - 1)) + a^(5/2)*log(-2*a*cos(d*x + c) - 2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*cos(d*x + c) - a) + 2*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/d, 2*(2*sqrt(2)*sqrt(-a)*a^2*arctan(sq
rt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) - sqrt(-a)*a^2*arcta
n(sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) + a^2*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c)))/d]

Sympy [F(-1)]

Timed out. \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right ) \,d x } \]

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c), x)

Giac [F]

\[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right ) \,d x } \]

[In]

integrate(cot(d*x+c)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cot (c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int \mathrm {cot}\left (c+d\,x\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int(cot(c + d*x)*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)*(a + a/cos(c + d*x))^(5/2), x)